Ongoing biodegradation of Deepwater Horizon oil in beach sands: Insights from tracing petroleum carbon into microbial biomass

Joel T. Bostic,1, Christoph Aeppli, Robert F. Swarthout, Christopher M. Reddy, Lori A. Ziolkowski

1 Present Address: University of Maryland Center for Environmental Science, Appalachian Laboratory, Frostburg, MD 21532, United States.
⁎ Corresponding author.
E-mail address: loriz@sc.edu (L.A. Ziolkowski).
⁎⁎ Present Address: University of Maryland Center for Environmental Science, Appalachian Laboratory, Frostburg, MD 21532, United States.

ARTICLE INFO

Keywords:
Deepwater Horizon
Oil spill
Natural abundance radiocarbon
PLFA

ABSTRACT

Heavily weathered petroleum residues from the Deepwater Horizon (DwH) disaster continue to be found on beaches along the Gulf of Mexico as oiled-sand patties. Here, we demonstrate the ongoing biodegradation of weathered Macondo Well (MW) oil residues by tracing oil-derived carbon into active microbial biomass using natural abundance radiocarbon (14C). Oiled-sand patties and non-oiled sand were collected from previously studied beaches in Mississippi, Alabama, and Florida. Phospholipid fatty acid (PLFA) analyses illustrated that microbial communities present in oiled-sand patties were distinct from non-oiled sand. Depopulated 14C measurements of PLFA revealed that microbes on oiled-sand patties were assimilating MW oil residues five years post-spill. In contrast, microbes in non-oiled sand assimilated recently photosynthesized carbon. These results demonstrate ongoing biodegradation of weathered oil in sand patties and the utility of 14C PLFA analysis to track the biodegradation of MW oil residues long after other indicators of biodegradation are no longer detectable.

1. Introduction

The Deepwater Horizon (DwH) disaster was one of the largest accidental marine oil spills in history. An estimated 779 million L of fluid, consisting of 5.3 × 10¹¹ g of oil and 1.7 × 10¹¹ g of gas, from the damaged Macondo well (MW) were released into the Gulf of Mexico beginning on April 20, 2010 and continued flowing for 87 days (Reddy et al., 2012). The spilled oil and gas were altered, removed, and transported through various physical, biological, and mechanical processes (Ramseur, 2010). An estimated 10% of the released petroleum fluid formed a surface slick (Reddy et al., 2012; Ryerson et al., 2011; McNutt et al., 2012) that oiled approximately 965 km of sandy beaches along the northern Gulf of Mexico coastline (Nixon et al., 2016). While large aggregates of oil on coastlines were manually and mechanically removed during initial cleanup efforts, oiled-sand patties (~1–5 cm in diameter) are still being washed ashore today, likely derived from submerged oiled mats offshore (Hayworth et al., 2015). Due to their continued deposition, oiled-sand patties represent the most accessible samples of MW oil residues remaining.

For this pool of remaining oil washing ashore on sandy beaches, the most likely natural process of removal is microbial degradation. Generally, microbes degrade lower molecular weight saturated and smaller aromatic compounds first, while heavier, more aromatic compounds are degraded at a much slower rate (Wang et al., 1998). Within oiled-sand patties, many of the lower molecular weight saturated and aromatic hydrocarbons were lost rather quickly (< 1 year post-spill) (Aeppli et al., 2012). Additionally, loss of some normal, branched, and cyclic alkanes (> C₂₂) in oiled-sand patties was attributed to microbial degradation (Gros et al., 2014). Therefore, oiled-sand patties were heavily weathered by one to two years post-spill (Wenger et al., 2002), with some MW oil residues (including sand patties) becoming dominated by oxygenated hydrocarbon degradation products that are not present in fresh MW oil (Aeppli et al., 2012; White et al., 2016). Such newly formed oxygenated hydrocarbons have been hypothesized to be recalcitrant, but this hypothesis has not been tested in situ (Aeppli et al., 2012). Because lower molecular weight saturated and aromatic hydrocarbons are amenable to traditional analytical approaches, these compounds are conventionally used to gauge degradation. Many of these conventional indicators used to gauge biodegradation, such as the ratio of octadecane (C₁₈) to phytane, have been removed from heavily...
weathered MW oil in sand patties, therefore ongoing degradation is difficult to verify using these molecular-ratio based methods.

Measurements of carbon (C) isotopes in microbial lipids have been used as an alternative approach to using molecular ratios for gauging microbial degradation. A commonly used class of microbial lipids in C source elucidation is phospholipid fatty acids (PLFA) (Mahmoudi et al., 2013a; Wakeham et al., 2006; Slater et al., 2005; Slater et al., 2006; Mahmoudi et al., 2013b; Ahad et al., 2010; Ahad and Pakdel, 2013; Boschker et al., 1999; Boschker et al., 2005). Because PLFA readily degrade after cell death (White et al., 1979; Harvey et al., 1986), they provide a snapshot of the viable microbial community and their C sources at the time of sampling. C source elucidation has primarily been accomplished by measuring the stable carbon isotopic (\(^{13}\text{C}\)) composition of microbial membranes (Boschker et al., 1999; Londry et al., 2004; Petsch et al., 2003).

Natural abundance radiocarbon (\(^{14}\text{C}\)) measurements of microbial lipids provide powerful resolution for elucidating microbial C sources in oilied systems. Petroleum C (\(\Delta^{14}\text{C} = -1000\%\)) (White et al., 2005) is easily distinguishable from modern C produced by photosynthesis over the past 20 years (\(\Delta^{14}\text{C} = 40-100\%\)) (Graven et al., 2012). Since petroleum and modern organic matter are separated by a large dynamic range in \(\Delta^{14}\text{C} (>1000\%\)) and the analytical uncertainty (~20\%) represents only a small percentage of that signal, radiocarbon is a powerful tool for constraining estimates of C sources to microbes. \(^{14}\text{C}\) of microbial lipids (\(^{14}\text{C}_{\text{PLFA}}\)) has been previously used in a number of studies related to oil spills (Table S1) (Mahmoudi et al., 2013a; Wakeham et al., 2006; Slater et al., 2005; Slater et al., 2006; Mahmoudi et al., 2013b; Ahad et al., 2010; Ahad and Pakdel, 2013; Petsch et al., 2001; Cowie et al., 2010; Mills et al., 2013; Morrill et al., 2014). In particular, \(^{14}\text{C}_{\text{PLFA}}\) was used in oil-spill contaminated salt marsh sediments and rocky intertidal zones to demonstrate that microbes may initially assimilate oil (Slater et al., 2006), but eventually preferentially consume natural organic matter (Mahmoudi et al., 2013a; Wakeham et al., 2006; Slater et al., 2005). Specific to the DwH disaster, \(^{14}\text{C}\) was used to show that oxygenated hydrocarbons in weathered MW oil were formed post-spill from \(^{14}\text{C}\)-free precursors (i.e., physical or biological degradation of petroleum, and not natural organic matter) (Aeppli et al., 2012). Additionally, natural abundance \(^{14}\text{C}\) was used to trace residues deposited on the Gulf of Mexico seafloor (Chanton et al., 2015) and assimilation of oil-derived C into the marine food web (Chanton et al., 2012).

Here we provide evidence of active microbial degradation of highly weathered oil using the \(^{14}\text{C}\) signature of microbial lipids. The primary goal of this study was to assess if microbes actively degrade weathered MW oil residues on affected beaches. Oiled-sand patties and non-oiled sand were collected from three Gulf of Mexico beaches in July 2015 that have been previously studied (Hayworth et al., 2015; Aeppli et al., 2012; White et al., 2016), and compound-class \(^{14}\text{C}\) analysis of microbial lipids demonstrated that microbes continue to assimilate weathered MW oil.

2. Materials and methods

2.1. Sample location

Oiled-sand patties and visibly non-oiled sand samples were collected in July 2015 from Ship Island (SI), MS; Fort Morgan (FM) AL; and Fort Pickens (FP), FL (Fig. 1) following previously described procedures (Aeppli et al., 2012). Samples were obtained from both intertidal and supratidal locations. Intertidal (IT) regions were defined as the area between low tide and high tide while supratidal (ST) regions were the areas between the high tide and dune line (Operational Science Advisory Team (OSAT), 2011). Samples were placed in pre-combusted glass containers, transported on ice for one to three days, and then stored at ~20 °C until further analysis.

2.2. Oil characterization and fingerprinting

To determine the extent of weathering and the source of the oil residues in the sand patties, samples were solvent-extracted with dichloromethane/methanol (9:1 v/v) and analyzed using gas chromatography coupled to a mass spectrometer (GC-MS), comprehensive two-dimensional gas chromatography coupled to a flame ionization detector (GC × GC-FID), as well as thin layer chromatography coupled to a flame ionization detector (TLC-FID) according to previously described methods (Aeppli et al., 2012; Aeppli et al., 2014). See the Supporting information (SI) for further details on oil characterization and fingerprinting.

2.3. PLFA extraction for \(^{14}\text{C}\) analysis

PLFA were extracted using a modified Bligh and Dyer method (Bligh and Dyer, 1959). Oiled-sand patties and non-oiled sand (10–80 g) were sonicated for 2 min in a 1:2:0.8 dichloromethane/methanol/phosphate (DCM/MEOH/PO4) buffer mixture (Fig. S1) and left to sit overnight at room temperature. Extracts were then filtered (VWR Glass MicroFibre Filter, 691–1.5 μm particle retention) into separatory funnels (1 L) and augmented with DCM and H2O to form a 1:1:0.9 DCM/MEOH/PO4 buffer mixture to produce organic (lower) and aqueous (upper) phases. The organic phase, or total lipid extract (TLE), was collected and evaporated to ~1 mL under ultrahigh purity (UHP) N2. The TLE was then charged onto fully activated silica gel (baked at 400 °C for 4 h, Alfa Aesar, 215–400 mesh) in glass columns (25 mm i.d. and ~25 cm silica gel height) and separated into fractions of increasing polarity by elution with DCM, acetone, and MeOH. Care was taken to use sufficiently large silica gel columns to ensure that the columns were not overloaded. The MeOH fraction contained the PLFA, which were then converted to fatty acid methyl esters (FAME) via mild alkaline methanalysis. As this is base-catalyzed transesterification, free fatty acids were not methylated (Chowdhury and Dick, 2012), which is critical for separating the viable organisms from those that are non-living. The free fatty acids were not analyzed as part of this project.

As our goal was to measure the bulk \(^{14}\text{C}\) of the PLFA-derived FAME, further separation from co-occurring non-FAME peaks (presumably oxygenated petroleum hydrocarbon degradation products) using secondary silica gel chromatography was utilized. To this end, samples were loaded onto fully activated silica gel and eluted with 4:1 hexane/DCM, DCM, and MeOH in disposable glass pipettes. The FAME were eluted in the DCM fraction. An additional separation on the secondary silica gel system was completed for selected samples (denoted with a plus (+) sign) to remove remaining petroleum degradation products contained within the FAME fraction that could be monitored using gas chromatography (Fig. S2).

FAME were identified and quantified using an Agilent 7890B/
2.4. Radiocarbon measurements

14C was measured for whole oiled sand-patty samples and PLFA extracted from both oiled sand-patties and non-oiled sand. Oiled-sand patties were treated with 5% HCl to remove carbonates and placed into pre-combusted quartz tubes. PLFA extracts were dried under UHP N$_2$ in pre-combusted quartz tubes. Cupric oxide and silver wire were added to the quartz tubes before being evacuated on a vacuum line and sealed. After tubes were combusted at 900 °C for 4 h, the evolved CO$_2$ of the sample analyzed (Δ14C, peak area), as measured by GC – MS, was puriﬁed, quantiﬁed manometrically, and sealed into Pyrex tubes then submitted for 14C analysis at the Center for Applied Isotope Studies at the University of Georgia. 14C values were normalized to δ13C values of −25% to correct for isotopic fractionation and presented as Δ14C (% relative to the standard NBS Oxalic Acid I (NIST-SRM-4990) (Stuiver and Polach, 1977). To correct the isotopic value of PLFA for the fossil derived methanol C atom added during the conversion of PLFA to FAME (e.g. transesteriﬁcation), an isotopic mass balance was used (SI Text). Uncertainty of Δ14C was assumed to ± 10% for bulk oiled-sand patties and ± 20% for PLFA. Combustion blanks contained < 3 μg C, while method blanks, extracts without any sample that had been through the entire process, were an additional 1 μg C, which was at least 25 × smaller than samples sizes for 14C analysis that ranged from 100 to 1000 μg C.

2.5. Accounting for oil-derived C using isotope mass balance

To account for the potential influence of GC-amenable non-PLFA oil degradation products in ZPLFA fractions, an isotopic mass balance approach was used. The following isotopic mass balance equations were used to constrain the isotope value of PLFA:

$$f_{PLFA} + f_{oil} = 1$$
(1)

$$\Delta^{14}C_{measured} = \Delta^{14}C_{ZPLFA} \times f_{PLFA} + \Delta^{14}C_{oil} \times f_{oil}$$
(2)

To calculate the isotope value of PLFA (Δ14C$_{ZPLFA}$), the isotope value of the sample analyzed (Δ14C$_{measured}$) and the relative mass contributions of oil (f$_{oil}$) and PLFA (f$_{PLFA}$) to the sample must be known. The mass contribution from oil (f$_{oil}$) to PLFA fractions was calculated using the ratio of non-PLFA peak area to total peak area (PLFA + non-PLFA peak area), as measured by GC–MS (using total ion current). Δ14C$_{measured}$ was the reported AMS value and Δ14C$_{oil}$ is assumed to be −1000‰.

3. Results

3.1. Oil fingerprinting and weathering state of oiled samples

To confirm that the oil residues from oiled-sand patties in this study were derived from the MW oil, the hopanoid biomarkers were measured as they have shown to be the most resistant to weathering compared to other biomarkers (Aeppli et al., 2014). Overall, the ratio of hopanoid biomarkers in the oiled sand patties in this study were consistent with MW oil as well as with sand Patty samples previously fingerprinted as MW oil, they were also significantly different from other reference crude oils form the Gulf of Mexico (Table S3, Table S4). While one of the nine investigated hopanoid biomarkers ratios (4HH(R)/4HH(S)) ratio was a non-match to MW oil, it has been shown previously that this particular ratio can be affected by oil biodegradation (Aeppli et al., 2014). Overall, the hopanoid biomarkers—as with the visual appearance and sampling location—of the investigated oiled sand patties samples are consistent with MW as the source oil.

As expected and in line with previous studies (Aeppli et al., 2014), the oiled sand patty samples were found to contain heavily weathered oil. GC–MS analysis (Fig. 2) and GC × GC–FID analysis (Fig. S4) of the oil residues show that most n-alkanes and isoprenoids were completely degraded, and an unresolved complex mixture (UCM) of highly branched and cyclic alkanes as well as hopanoids and (dia)steranes.
The concentrations of phospholipid fatty acids (pmol PLFA g\(^{-1}\) sand) in oiled sand-patties were similar to the non-oiled sand in all samples collected (Fig. 3). Oiled sand patties contained 2.5 × 10\(^4\) ± 9.6 × 10\(^3\) pmol PLFA g\(^{-1}\) sand (n = 10), while non-oiled sand contained 2.1 × 10\(^4\) ± 1.0 × 10\(^4\) pmol PLFA g\(^{-1}\) sand (n = 6). The samples analyzed originated from both supratidal and intertidal environments. When the oiled samples were separated into supratidal (n = 8) and intertidal samples (n = 2), the difference between the average concentration of PLFA in the two environments was within the sample variability (2.6 × 10\(^4\) ± 1.0 × 10\(^4\) pmol PLFA g\(^{-1}\) sand versus 2.3 × 10\(^4\) ± 9.4 × 10\(^3\) pmol PLFA g\(^{-1}\) sand). Conversely, when the non-oiled samples were separated into supratidal (n = 1) and intertidal (n = 5) samples, the abundance of PLFA was different in the two environments (4.7 × 10\(^3\) PLFA g\(^{-1}\) sand versus 2.4 × 10\(^4\) ± 7.0 × 10\(^3\) pmol PLFA g\(^{-1}\) sand, respectively). The PLFA content was not influenced by the implementation of an additional silica gel clean-up (see Materials and methods).

Often, PLFA concentrations are converted to cell abundances (Green and Scow, 2000). Using this approach, the cellular abundance ranged from 3.0–7.9 × 10\(^8\) cells g\(^{-1}\) sand in oiled-sand and 0.93–7.0 × 10\(^8\) cells g\(^{-1}\) sand in non-oiled sand, which are similar magnitudes to previous work studying microbial communities using a petroleum C source (Petsch et al., 2001). These calculated microbial abundances, as measured via PLFA, indicated that the oiled-sand was sustaining a similarly abundant microbial population as the non-oiled sand.

To facilitate comparison between samples, we organized the observed PLFA into groups based on their chemical structure (saturated, monounsaturated, polyunsaturated, branched, cyclic, and other PLFA). The most striking difference between the oiled and non-oiled PLFA is the increased abundance of monounsaturated PLFA in non-oiled samples (Fig. 4). The microbial lipids extracted from non-oiled samples were composed of approximately half monounsaturated PLFA, while the PLFA extracted from the oiled sand patties contained a much smaller proportion of monounsaturated PLFA (~14 mol%). Additionally, the non-oiled sand contained a slightly higher proportion of polyunsaturated PLFA (~8 mol%) than the oiled sand patties (~3 mol%). Most oiled samples (80%) were far more abundant in “other PLFA” than all non-oiled samples. These “other PLFA” compounds were (a) mostly medium molecular weight lipids (weighted average = 15 carbons) that had GC–MS mass fragments characteristic of PLFA (m/z 74, 87) (McLafferty, 1959; Bobbie and White, 1980) but poor baseline resolution made it difficult to identify them, (b) multiply branched PLFA with either 2-methyl (m/z 88, 101) or 3-methyl branching (m/z 74, 101) (Hedrick et al., 2008), and (c) PLFA compounds that were both branched and unsaturated. The proportion of “other PLFA” was as high as 33 mol% of the total measured PLFA in the oiled sand patties. Therefore, based on the PLFA distributions, the microbial communities inhabiting the oiled sand-patties and the non-oiled sand were distinct.

3.3. Radiocarbon of sand patties and microbial lipids

To assess if microbes were consuming oil-derived carbon or more modern C sources, we measured the natural abundance radiocarbon (or \(^{14}\)C) content of both oiled-sand patties and microbial lipids (Fig. 5). The bulk total organic carbon (TOC) of oiled-sand patties had radiocarbon values that ranged from −996 to −966‰ (n = 6), consistent with previous \(^{14}\)C measurements of oiled-sand patties (Aeppli et al., 2012). Microbial lipid (PLFA) extracts of oiled-sand patties comprised <1% of TOC, and were all highly depleted in radiocarbon (Δ\(^{14}\)C\(_{\text{meas}}\) = −990 to −921‰, Table S2). Because GC–MS chromatograms of the PLFA extracts contained a number of peaks that were not PLFA compounds and likely originated from weathered oil, we used a mass-balance approach to account for the \(^{14}\)C values of the non-PLFA fraction of these samples. As a conservative estimation, this calculation, outlined in the Methods section, assumed that all non-PLFA peaks were oil-derived, as non-oiled samples did not contain non-PLFA peaks. Based on this isotopic mass balance method, \(f_{\text{PLFA}}\) was between 1 and 81% in the PLFA extracts from oil sand patties. The samples that underwent additional silicone gel chromatography purification steps (denoted by a “+” in Fig. 5) contained a smaller proportion of petroleum carbon. However, after adjusting the Δ\(^{14}\)C values of all oiled sand-patty PLFA samples for the presence of oil, we obtained consistent highly depleted Δ\(^{14}\)C\(_{\text{PLFA}}\) values of −953 to −852‰ (Table S2). In sharp contrast, microbial lipids from non-oiled sand contained modern carbon (Δ\(^{14}\)C\(_{\text{PLFA}}\) = 34‰ and 36‰), which is consistent with the radiocarbon content of the present day atmospheric CO2 (~20‰) assuming the uncertainty on these Δ\(^{14}\)C\(_{\text{PLFA}}\) measurements is ± 20‰ (Levin et al., 2013). Therefore, natural abundance radiocarbon measurements of phospholipid fatty acids show that microbes in oiled-sand patties were primarily assimilating depleted C (e.g. oil), while microbes in non-oiled sand were assimilating modern carbon (e.g. recently photosynthesized).

4. Discussion

4.1. Microbial communities differ between oiled and non-oiled sand

The different distribution of PLFA compounds in oiled and non-oiled sand samples suggests they are composed of different microbial communities. Therefore, if the microbial lipids are any indication of the diversity of the microbial community present, these data support there being different microbial communities inhabiting the oiled and non-oiled sand. It should be noted that when PLFA distributions in this study were compared to other studies that employed \(^{14}\)C of PLFA to assess microbial degradation of petroleum or fossil C sources (Table S1, Fig. SS), PLFA distributions of microbes degrading weathered shale under a laboratory setting were more similar (Petsch et al., 2005).

Using the microbial lipid data, we followed an approach of a previous study to determine if there was active oil degradation occurring.

Fig. 3. PLFA concentrations in non-oiled and oiled sand showing the average concentration (bar) and the standard deviation (error bar).
This approach defines a hydrocarbon degrading activity index (HDAI) based on the observed PLFA distributions of known oil degrading bacteria, with higher HDAI values indicating oil-degrading microbes (Aries et al., 2001). Indeed, microbial lipids from oiled-sand patties in this study had a higher HDAI value (2.5) than microbial lipids from non-oiled sand (0.4), indicating that oiled-sand patties contain microbes associated with oil degradation (Table S6). Therefore, based on the measured PLFA distributions, our results indicate that there were different types of microbial communities inhabiting the oil and non-oiled sand, and that the microbial communities inhabiting the oiled sand were actively consuming the oil.

4.2. Microbes in sand patties are consuming petroleum carbon

Based on the depleted 14C content of the microbial lipids, we conclude that petroleum carbon is the primary source of carbon to the microbes living on all investigated oiled sand patties. The predominant Δ^{14}C signal of the microbial lipids, or PLFA, extracted from oiled sand patties was extremely depleted (i.e. Δ^{14}C < -850‰, Fig. 5). Additionally, the 14C content of the microbial lipids was similarly depleted regardless of the sample collection location. The fact that intertidal microbial lipids were equally depleted in radiocarbon as the supratidal microbial lipids suggests that the proximity to fresh carbon sources and moisture in the intertidal zone did not impact the 14C content of the microbial lipids. Collectively, these results demonstrate that carbon within the cellular membranes is consistent with the incorporation of petroleum carbon and that the microbes are primarily consuming carbon that originated from the oil in the sand patties.

While the microbial communities living on the oiled sand patties contained 14C that was consistent with the incorporation of oil, the microbial lipids extracted from non-oiled sand samples were consistent with present-day atmospheric carbon. The Δ^{14}C value of atmospheric CO$_2$ is estimated to have been $+30 \pm 10$‰ in 2015 when these samples were collected (Graven et al., 2012). Due to sample size limitations for 14C analysis, PLFA 14C samples were only analyzed for non-oiled samples from the intertidal zone, and those microbial lipids samples contained carbon consistent with atmospheric C and within error of each other (Δ^{14}C = +34 ± 20‰ and +36 ± 20‰). The modern carbon in microbial lipids in the non-oiled sand could be a combination of autotrophs directly fixing modern-day CO$_2$ and heterotrophs consuming recently fixed organic matter that has a modern 14C signature. Based on the isotopic composition of the microbial lipids

![Fig. 5. Δ^{14}C and $f_{\text{petroleum}}$ for bulk oiled-sand patties (unfilled red circles), ΣPLFA from oiled-sand (filled red circles), and ΣPLFA from non-oiled sand (filled blue squares). ΣPLFA Δ^{14}C indicates microbes present on oiled-sand patties are assimilating a petroleum source of C while microbes on non-oiled sand are assimilating a modern source of C. (+ notates samples that underwent an additional secondary silica gel step). Δ^{14}C and $f_{\text{petroleum}}$ values of oiled sand PLFA (filled red circles) are corrected for the presence of oil or oil degradation products. Sample names (from left to right): Bulk SI ST, SI ST, SI ST+, FM IT, Bulk FM ST, FM ST, FM ST+, Bulk FM IT, FM IT+, FP IT, Bulk FP IT, FP IT. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)](image-url)
extracted from non-oiled sand, it is clear that the microbial communities living on oiled sand patties are using different carbon source(s) than the microbes living on the non-oiled sand. Since the microbial lipids in the non-oiled sand contain a significantly more modern Δ14C than the PLFA from oiled sand within our reported uncertainty, we explored the possibility that the depleted microbial lipid Δ14C signal from the oil-sand patties was due to the presence of oil or oil degradation products in the PLFA extracts. As described in the methods, the amount of oil remaining in the ΣPLFA samples was estimated based on the amount of carbon in the samples as calculated by GC–MS. Regardless of the oil content, it is possible to account for the presence of that oil in the Δ14C values. Even after the most conservative estimation of how much oil or oil degradation products could be in the isolated PLFA fraction of our samples (assuming all non-PLFA signal was oil derived), PLFA from the oiled sand is consistently highly depleted (Δ14CΣPLFA ranged from −952 to −853‰). Even after adjusting the measured Δ14C values for the presence of oil, the samples were still uniformly depleted in 14C (Fig. 5), indicating that the microbes were primarily eating oil. If ΣPLFA from the oiled-sand patties actually contained modern carbon like the non-oiled sand patties and the depleted 14C was simply from the oil contaminating the ΣPLFA, we calculated that these samples would have had to contain between 92 and >99% oil to have the same 14C value as the non-oiled sand patties, which is much larger than the foil we calculated for our samples (1–81%) based on the proportion of the total GC–MS signal represented by PLFA peaks. Additionally, based on the amount of PLFA in the samples we can reject the hypothesis that >90% of the carbon in the sample was oil as there were significant amounts of PLFA typical of microbial communities in the samples (Fig. S2). For example, the sample that was calculated to contain the least amount of oil (FM intertidal, foil = 1%) was still extremely depleted in 14C (Δ14CΣPLFA = −920‰), indicating that the microbes are in fact consuming oil derived carbon. Therefore, the depleted 14C in the microbial lipids are due to the incorporation of oil-derived carbon by the microbes rather than contamination of the samples by oil. This study presents the radiocarbon data of the ΣPLFA, which determined the 14C content for all the viable microbial lipids in a sample. Previous studies that employed 14CPLFA (Table S1) did not find significant differences in the 14C content of individual PLFA compounds from the same sample (or extract) (Mhamoudi et al., 2013a; Wakeham et al., 2006; Slater et al., 2005; Cowie et al., 2010). This method of using ΣPLFA 14C rather than individual PLFA is more cost effective and can provide larger sample sizes than measuring the 14C of individual PLFA. While isolating individual compounds via preparative-GC may have minimized the fraction of oil in the samples, samples isolated with a fraction collector would still contain unresolved complex mixture that co-elutes with the PLFA compounds (White et al., 2013). 4.3. Implications for microbial degradation of weathered oil Continued microbial degradation of heavily weathered MW oil has implications for oil continuing to wash ashore. Our results clearly demonstrate that microbes contained oil derived carbon, most likely from the weathered oil that continues to be deposited on Gulf Coast beaches. These findings suggest microbial degradation of weathered oil occurred and may continue to occur, as oiled-sand patties are expected to wash ashore for several years (Hayworth et al., 2015). It should be noted that a limitation of this study is that it only provides a snapshot of in situ carbon usage of the microbes and not the rate of oil carbon being incorporated. The removal of oiled-sand patties through microbial degradation is surprising given that heavily weathered oil is often assumed to be recalcitrant (Wang et al., 1998). While the microbial community as a whole may be degrading the weathered MW oil, it is unclear if the microbes are consuming the oil directly or the oxygenated oil degradation byproducts. Therefore, a logical next step would be to use a combination of environmental manipulations (e.g. photochemistry) and incubations to determine if microbes are using oil directly or oil residue compounds. Lastly, quantifying degradation rates of remaining MW oil using incubations (Röling et al., 2002) will allow for better estimates of when affected beaches will return to pre-DwH conditions. In conclusion, our 14C analysis of microbial lipids demonstrates that microbes on Gulf of Mexico beaches are continuing to degrade weathered oil residues from the DwH spill for more than five years in the environment. Microbial degradation of weathered oil represents a loss term for MW oil that continues to wash ashore on Gulf Coast beaches. Our results, showing microbial degradation of MW oil, demonstrate that microbes are capable of continued degradation of weathered oil residues from the DwH spill.

Author contributions

The manuscript was written through equal contributions of all authors. All authors have given approval to the final version of the manuscript.

Acknowledgment

This research was made possible in part by a funds from the College of Arts and Science at University of South Carolina to LZ, and a grant from NSF (NSF-OCE 1333148) and by The Gulf of Mexico Research Initiative (GoMRI SA 16-30) to CM and CA. Data are publicly available through the Gulf of Mexico Research Initiative Information & Data Cooperative (GRIIDC) at https://data.gulfresearchinitiative.org The authors appreciate the valuable feedback provided by anonymous reviewers.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.marpolbul.2017.10.058.

References
